Code: EE2T4

I B. Tech - II Semester – Regular Examinations – April 2016

BASIC ELECTRONIC DEVICES AND CIRCUITS (ELECTRICAL & ELECTRONICS ENGINEERING)

Duration: 3 hours Max. Marks: 70

PART - A

Answer *all* the questions. All questions carry equal marks 11x 2 = 22 M

- 1. a) Differentiate between static and dynamic resistances.
 - b) Explain diode as a switch.
 - c) Give any four advantages of FET over BJT.
 - d) Differentiate between enhancement mode and depletion mode operations of MOSFET.
 - e) Define stability factors S, S^{I} and S^{II} .
 - f) Explain need for biasing.
 - g) Draw the transistor hybrid model circuit.
 - h) Write the Barkhausen criterion.
 - i) What are the advantages of negative feedback?
 - j) Write the applications of RC oscillators.
 - k) Why CC amplifier called as Emitter follower?

PART - B

Answer any <i>THREE</i> questions.	All questions carry equal
marks.	$3 \times 16 = 48 M$

- 2. a) Draw I-V characteristics of a silicon junction diode and explain. 8 M
 - b) Derive the expression for ripple factor of full wave rectifier with capacitor filter.

 8 M
- 3. a) A BJT has α =0.99, I_B =25 μ A and I_{CBO} =200nA. Find
 - i) the dc collector current
 - ii) the dc emitter current and
 - iii) the percentage error in emitter current when leakage current is neglected.
 - b) Explain the operation of JFET with neat drain characteristics.

8 M

- 4. a) Explain the different bias compensation techniques to reduce the drift of the operating point.

 8 M
 - b) Explain the self bias circuit and derive the operating point.

8 M

5. a) Analyze a Single stage transistor amplifier using hparameters. 8 M

- b) Derive the high frequency parameters transconductance and input conductance of a transistor in terms of low frequency parameters.

 8 M
- 6. a) Draw and explain the RC phase shift oscillator. Also derive the condition for oscillations.
 - b) Draw and explain feedback topologies. Give the effect of negative feedback on input and output resistances of these topologies.

 8 M